library

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub matumoto1234/library

:heavy_check_mark: test/aoj/dpl/5_D.test.cpp

Depends on

Code

#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_D"

#include <bits/stdc++.h>
using namespace std;

// internal_math.hpp begin here
namespace atcoder {

  namespace internal {

    // @param m `1 <= m`
    // @return x mod m
    constexpr long long safe_mod(long long x, long long m) {
      x %= m;
      if (x < 0)
        x += m;
      return x;
    }

    // Fast modular multiplication by barrett reduction
    // Reference: https://en.wikipedia.org/wiki/Barrett_reduction
    // NOTE: reconsider after Ice Lake
    struct barrett {
      unsigned int _m;
      unsigned long long im;

      // @param m `1 <= m < 2^31`
      explicit barrett(unsigned int m): _m(m), im((unsigned long long)(-1) / m + 1) {}

      // @return m
      unsigned int umod() const {
        return _m;
      }

      // @param a `0 <= a < m`
      // @param b `0 <= b < m`
      // @return `a * b % m`
      unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v)
          v += _m;
        return v;
      }
    };

    // @param n `0 <= n`
    // @param m `1 <= m`
    // @return `(x ** n) % m`
    constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
      if (m == 1)
        return 0;
      unsigned int _m = (unsigned int)(m);
      unsigned long long r = 1;
      unsigned long long y = safe_mod(x, m);
      while (n) {
        if (n & 1)
          r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
      }
      return r;
    }

    // Reference:
    // M. Forisek and J. Jancina,
    // Fast Primality Testing for Integers That Fit into a Machine Word
    // @param n `0 <= n`
    constexpr bool is_prime_constexpr(int n) {
      if (n <= 1)
        return false;
      if (n == 2 || n == 7 || n == 61)
        return true;
      if (n % 2 == 0)
        return false;
      long long d = n - 1;
      while (d % 2 == 0)
        d /= 2;
      constexpr long long bases[3] = { 2, 7, 61 };
      for (long long a: bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
          y = y * y % n;
          t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
          return false;
        }
      }
      return true;
    }
    template <int n>
    constexpr bool is_prime = is_prime_constexpr(n);

    // @param b `1 <= b`
    // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
    constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
      a = safe_mod(a, b);
      if (a == 0)
        return { b, 0 };

      // Contracts:
      // [1] s - m0 * a = 0 (mod b)
      // [2] t - m1 * a = 0 (mod b)
      // [3] s * |m1| + t * |m0| <= b
      long long s = b, t = a;
      long long m0 = 0, m1 = 1;

      while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
      }
      // by [3]: |m0| <= b/g
      // by g != b: |m0| < b/g
      if (m0 < 0)
        m0 += b / s;
      return { s, m0 };
    }

    // Compile time primitive root
    // @param m must be prime
    // @return primitive root (and minimum in now)
    constexpr int primitive_root_constexpr(int m) {
      if (m == 2)
        return 1;
      if (m == 167772161)
        return 3;
      if (m == 469762049)
        return 3;
      if (m == 754974721)
        return 11;
      if (m == 998244353)
        return 3;
      int divs[20] = {};
      divs[0] = 2;
      int cnt = 1;
      int x = (m - 1) / 2;
      while (x % 2 == 0)
        x /= 2;
      for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
          divs[cnt++] = i;
          while (x % i == 0) {
            x /= i;
          }
        }
      }
      if (x > 1) {
        divs[cnt++] = x;
      }
      for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
          if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
            ok = false;
            break;
          }
        }
        if (ok)
          return g;
      }
    }
    template <int m>
    constexpr int primitive_root = primitive_root_constexpr(m);

    // @param n `n < 2^32`
    // @param m `1 <= m < 2^32`
    // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
    unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) {
      unsigned long long ans = 0;
      while (true) {
        if (a >= m) {
          ans += n * (n - 1) / 2 * (a / m);
          a %= m;
        }
        if (b >= m) {
          ans += n * (b / m);
          b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m)
          break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
      }
      return ans;
    }

  } // namespace internal

} // namespace atcoder
// internal_math.hpp end here

// internal_type_traits.hpp begin here
namespace atcoder {

  namespace internal {

#ifndef _MSC_VER
    template <class T>
    using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;

    template <class T>
    using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

    template <class T>
    using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using to_unsigned =
        typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;

#else

    template <class T>
    using is_integral = typename std::is_integral<T>;

    template <class T>
    using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;

#endif

    template <class T>
    using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

    template <class T>
    using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

    template <class T>
    using to_unsigned_t = typename to_unsigned<T>::type;

  } // namespace internal

} // namespace atcoder

// internal_type_traits.hpp begin here

// modint.hpp begin here
namespace atcoder {

  namespace internal {

    struct modint_base {};
    struct static_modint_base: modint_base {};

    template <class T>
    using is_modint = std::is_base_of<modint_base, T>;
    template <class T>
    using is_modint_t = std::enable_if_t<is_modint<T>::value>;

  } // namespace internal

  template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
  struct static_modint: internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() {
      return m;
    }
    static mint raw(int v) {
      mint x;
      x._v = v;
      return x;
    }

    static_modint(): _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    static_modint(T v) {
      long long x = (long long)(v % (long long)(umod()));
      if (x < 0)
        x += umod();
      _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    static_modint(T v) {
      _v = (unsigned int)(v % umod());
    }

    unsigned int val() const {
      return _v;
    }

    mint &operator++() {
      _v++;
      if (_v == umod())
        _v = 0;
      return *this;
    }
    mint &operator--() {
      if (_v == 0)
        _v = umod();
      _v--;
      return *this;
    }
    mint operator++(int) {
      mint result = *this;
      ++*this;
      return result;
    }
    mint operator--(int) {
      mint result = *this;
      --*this;
      return result;
    }

    mint &operator+=(const mint &rhs) {
      _v += rhs._v;
      if (_v >= umod())
        _v -= umod();
      return *this;
    }
    mint &operator-=(const mint &rhs) {
      _v -= rhs._v;
      if (_v >= umod())
        _v += umod();
      return *this;
    }
    mint &operator*=(const mint &rhs) {
      unsigned long long z = _v;
      z *= rhs._v;
      _v = (unsigned int)(z % umod());
      return *this;
    }
    mint &operator/=(const mint &rhs) {
      return *this = *this * rhs.inv();
    }

    mint operator+() const {
      return *this;
    }
    mint operator-() const {
      return mint() - *this;
    }

    mint pow(long long n) const {
      assert(0 <= n);
      mint x = *this, r = 1;
      while (n) {
        if (n & 1)
          r *= x;
        x *= x;
        n >>= 1;
      }
      return r;
    }
    mint inv() const {
      if (prime) {
        assert(_v);
        return pow(umod() - 2);
      } else {
        auto eg = internal::inv_gcd(_v, m);
        assert(eg.first == 1);
        return eg.second;
      }
    }

    friend mint operator+(const mint &lhs, const mint &rhs) {
      return mint(lhs) += rhs;
    }
    friend mint operator-(const mint &lhs, const mint &rhs) {
      return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint &lhs, const mint &rhs) {
      return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint &lhs, const mint &rhs) {
      return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint &lhs, const mint &rhs) {
      return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint &lhs, const mint &rhs) {
      return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() {
      return m;
    }
    static constexpr bool prime = internal::is_prime<m>;
  };

  template <int id>
  struct dynamic_modint: internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() {
      return (int)(bt.umod());
    }
    static void set_mod(int m) {
      assert(1 <= m);
      bt = internal::barrett(m);
    }
    static mint raw(int v) {
      mint x;
      x._v = v;
      return x;
    }

    dynamic_modint(): _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    dynamic_modint(T v) {
      long long x = (long long)(v % (long long)(mod()));
      if (x < 0)
        x += mod();
      _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    dynamic_modint(T v) {
      _v = (unsigned int)(v % mod());
    }

    unsigned int val() const {
      return _v;
    }

    mint &operator++() {
      _v++;
      if (_v == umod())
        _v = 0;
      return *this;
    }
    mint &operator--() {
      if (_v == 0)
        _v = umod();
      _v--;
      return *this;
    }
    mint operator++(int) {
      mint result = *this;
      ++*this;
      return result;
    }
    mint operator--(int) {
      mint result = *this;
      --*this;
      return result;
    }

    mint &operator+=(const mint &rhs) {
      _v += rhs._v;
      if (_v >= umod())
        _v -= umod();
      return *this;
    }
    mint &operator-=(const mint &rhs) {
      _v += mod() - rhs._v;
      if (_v >= umod())
        _v -= umod();
      return *this;
    }
    mint &operator*=(const mint &rhs) {
      _v = bt.mul(_v, rhs._v);
      return *this;
    }
    mint &operator/=(const mint &rhs) {
      return *this = *this * rhs.inv();
    }

    mint operator+() const {
      return *this;
    }
    mint operator-() const {
      return mint() - *this;
    }

    mint pow(long long n) const {
      assert(0 <= n);
      mint x = *this, r = 1;
      while (n) {
        if (n & 1)
          r *= x;
        x *= x;
        n >>= 1;
      }
      return r;
    }
    mint inv() const {
      auto eg = internal::inv_gcd(_v, mod());
      assert(eg.first == 1);
      return eg.second;
    }

    friend mint operator+(const mint &lhs, const mint &rhs) {
      return mint(lhs) += rhs;
    }
    friend mint operator-(const mint &lhs, const mint &rhs) {
      return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint &lhs, const mint &rhs) {
      return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint &lhs, const mint &rhs) {
      return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint &lhs, const mint &rhs) {
      return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint &lhs, const mint &rhs) {
      return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() {
      return bt.umod();
    }
  };
  template <int id>
  internal::barrett dynamic_modint<id>::bt(998244353);

  using modint998244353 = static_modint<998244353>;
  using modint1000000007 = static_modint<1000000007>;
  using modint = dynamic_modint<-1>;

  namespace internal {

    template <class T>
    using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

    template <class T>
    using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

    template <class>
    struct is_dynamic_modint: public std::false_type {};
    template <int id>
    struct is_dynamic_modint<dynamic_modint<id>>: public std::true_type {};

    template <class T>
    using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

  } // namespace internal

} // namespace atcoder
// modint.hpp end here


#include "../../../math/mod-factorial.hpp"
using namespace matumoto;

int main() {
  int n, k;
  cin >> n >> k;
  ModFactorial mf;

  cout << mf.combination(n + k - 1, n).val() << endl;
}
#line 1 "test/aoj/dpl/5_D.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/7/DPL/5/DPL_5_D"

#include <bits/stdc++.h>
using namespace std;

// internal_math.hpp begin here
namespace atcoder {

  namespace internal {

    // @param m `1 <= m`
    // @return x mod m
    constexpr long long safe_mod(long long x, long long m) {
      x %= m;
      if (x < 0)
        x += m;
      return x;
    }

    // Fast modular multiplication by barrett reduction
    // Reference: https://en.wikipedia.org/wiki/Barrett_reduction
    // NOTE: reconsider after Ice Lake
    struct barrett {
      unsigned int _m;
      unsigned long long im;

      // @param m `1 <= m < 2^31`
      explicit barrett(unsigned int m): _m(m), im((unsigned long long)(-1) / m + 1) {}

      // @return m
      unsigned int umod() const {
        return _m;
      }

      // @param a `0 <= a < m`
      // @param b `0 <= b < m`
      // @return `a * b % m`
      unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v)
          v += _m;
        return v;
      }
    };

    // @param n `0 <= n`
    // @param m `1 <= m`
    // @return `(x ** n) % m`
    constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
      if (m == 1)
        return 0;
      unsigned int _m = (unsigned int)(m);
      unsigned long long r = 1;
      unsigned long long y = safe_mod(x, m);
      while (n) {
        if (n & 1)
          r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
      }
      return r;
    }

    // Reference:
    // M. Forisek and J. Jancina,
    // Fast Primality Testing for Integers That Fit into a Machine Word
    // @param n `0 <= n`
    constexpr bool is_prime_constexpr(int n) {
      if (n <= 1)
        return false;
      if (n == 2 || n == 7 || n == 61)
        return true;
      if (n % 2 == 0)
        return false;
      long long d = n - 1;
      while (d % 2 == 0)
        d /= 2;
      constexpr long long bases[3] = { 2, 7, 61 };
      for (long long a: bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
          y = y * y % n;
          t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
          return false;
        }
      }
      return true;
    }
    template <int n>
    constexpr bool is_prime = is_prime_constexpr(n);

    // @param b `1 <= b`
    // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
    constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
      a = safe_mod(a, b);
      if (a == 0)
        return { b, 0 };

      // Contracts:
      // [1] s - m0 * a = 0 (mod b)
      // [2] t - m1 * a = 0 (mod b)
      // [3] s * |m1| + t * |m0| <= b
      long long s = b, t = a;
      long long m0 = 0, m1 = 1;

      while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
      }
      // by [3]: |m0| <= b/g
      // by g != b: |m0| < b/g
      if (m0 < 0)
        m0 += b / s;
      return { s, m0 };
    }

    // Compile time primitive root
    // @param m must be prime
    // @return primitive root (and minimum in now)
    constexpr int primitive_root_constexpr(int m) {
      if (m == 2)
        return 1;
      if (m == 167772161)
        return 3;
      if (m == 469762049)
        return 3;
      if (m == 754974721)
        return 11;
      if (m == 998244353)
        return 3;
      int divs[20] = {};
      divs[0] = 2;
      int cnt = 1;
      int x = (m - 1) / 2;
      while (x % 2 == 0)
        x /= 2;
      for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
          divs[cnt++] = i;
          while (x % i == 0) {
            x /= i;
          }
        }
      }
      if (x > 1) {
        divs[cnt++] = x;
      }
      for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
          if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
            ok = false;
            break;
          }
        }
        if (ok)
          return g;
      }
    }
    template <int m>
    constexpr int primitive_root = primitive_root_constexpr(m);

    // @param n `n < 2^32`
    // @param m `1 <= m < 2^32`
    // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
    unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) {
      unsigned long long ans = 0;
      while (true) {
        if (a >= m) {
          ans += n * (n - 1) / 2 * (a / m);
          a %= m;
        }
        if (b >= m) {
          ans += n * (b / m);
          b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m)
          break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
      }
      return ans;
    }

  } // namespace internal

} // namespace atcoder
// internal_math.hpp end here

// internal_type_traits.hpp begin here
namespace atcoder {

  namespace internal {

#ifndef _MSC_VER
    template <class T>
    using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type;

    template <class T>
    using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>;

    template <class T>
    using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using to_unsigned =
        typename std::conditional<is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type;

#else

    template <class T>
    using is_integral = typename std::is_integral<T>;

    template <class T>
    using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type;

    template <class T>
    using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type;

#endif

    template <class T>
    using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

    template <class T>
    using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

    template <class T>
    using to_unsigned_t = typename to_unsigned<T>::type;

  } // namespace internal

} // namespace atcoder

// internal_type_traits.hpp begin here

// modint.hpp begin here
namespace atcoder {

  namespace internal {

    struct modint_base {};
    struct static_modint_base: modint_base {};

    template <class T>
    using is_modint = std::is_base_of<modint_base, T>;
    template <class T>
    using is_modint_t = std::enable_if_t<is_modint<T>::value>;

  } // namespace internal

  template <int m, std::enable_if_t<(1 <= m)> * = nullptr>
  struct static_modint: internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() {
      return m;
    }
    static mint raw(int v) {
      mint x;
      x._v = v;
      return x;
    }

    static_modint(): _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    static_modint(T v) {
      long long x = (long long)(v % (long long)(umod()));
      if (x < 0)
        x += umod();
      _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    static_modint(T v) {
      _v = (unsigned int)(v % umod());
    }

    unsigned int val() const {
      return _v;
    }

    mint &operator++() {
      _v++;
      if (_v == umod())
        _v = 0;
      return *this;
    }
    mint &operator--() {
      if (_v == 0)
        _v = umod();
      _v--;
      return *this;
    }
    mint operator++(int) {
      mint result = *this;
      ++*this;
      return result;
    }
    mint operator--(int) {
      mint result = *this;
      --*this;
      return result;
    }

    mint &operator+=(const mint &rhs) {
      _v += rhs._v;
      if (_v >= umod())
        _v -= umod();
      return *this;
    }
    mint &operator-=(const mint &rhs) {
      _v -= rhs._v;
      if (_v >= umod())
        _v += umod();
      return *this;
    }
    mint &operator*=(const mint &rhs) {
      unsigned long long z = _v;
      z *= rhs._v;
      _v = (unsigned int)(z % umod());
      return *this;
    }
    mint &operator/=(const mint &rhs) {
      return *this = *this * rhs.inv();
    }

    mint operator+() const {
      return *this;
    }
    mint operator-() const {
      return mint() - *this;
    }

    mint pow(long long n) const {
      assert(0 <= n);
      mint x = *this, r = 1;
      while (n) {
        if (n & 1)
          r *= x;
        x *= x;
        n >>= 1;
      }
      return r;
    }
    mint inv() const {
      if (prime) {
        assert(_v);
        return pow(umod() - 2);
      } else {
        auto eg = internal::inv_gcd(_v, m);
        assert(eg.first == 1);
        return eg.second;
      }
    }

    friend mint operator+(const mint &lhs, const mint &rhs) {
      return mint(lhs) += rhs;
    }
    friend mint operator-(const mint &lhs, const mint &rhs) {
      return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint &lhs, const mint &rhs) {
      return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint &lhs, const mint &rhs) {
      return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint &lhs, const mint &rhs) {
      return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint &lhs, const mint &rhs) {
      return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() {
      return m;
    }
    static constexpr bool prime = internal::is_prime<m>;
  };

  template <int id>
  struct dynamic_modint: internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() {
      return (int)(bt.umod());
    }
    static void set_mod(int m) {
      assert(1 <= m);
      bt = internal::barrett(m);
    }
    static mint raw(int v) {
      mint x;
      x._v = v;
      return x;
    }

    dynamic_modint(): _v(0) {}
    template <class T, internal::is_signed_int_t<T> * = nullptr>
    dynamic_modint(T v) {
      long long x = (long long)(v % (long long)(mod()));
      if (x < 0)
        x += mod();
      _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T> * = nullptr>
    dynamic_modint(T v) {
      _v = (unsigned int)(v % mod());
    }

    unsigned int val() const {
      return _v;
    }

    mint &operator++() {
      _v++;
      if (_v == umod())
        _v = 0;
      return *this;
    }
    mint &operator--() {
      if (_v == 0)
        _v = umod();
      _v--;
      return *this;
    }
    mint operator++(int) {
      mint result = *this;
      ++*this;
      return result;
    }
    mint operator--(int) {
      mint result = *this;
      --*this;
      return result;
    }

    mint &operator+=(const mint &rhs) {
      _v += rhs._v;
      if (_v >= umod())
        _v -= umod();
      return *this;
    }
    mint &operator-=(const mint &rhs) {
      _v += mod() - rhs._v;
      if (_v >= umod())
        _v -= umod();
      return *this;
    }
    mint &operator*=(const mint &rhs) {
      _v = bt.mul(_v, rhs._v);
      return *this;
    }
    mint &operator/=(const mint &rhs) {
      return *this = *this * rhs.inv();
    }

    mint operator+() const {
      return *this;
    }
    mint operator-() const {
      return mint() - *this;
    }

    mint pow(long long n) const {
      assert(0 <= n);
      mint x = *this, r = 1;
      while (n) {
        if (n & 1)
          r *= x;
        x *= x;
        n >>= 1;
      }
      return r;
    }
    mint inv() const {
      auto eg = internal::inv_gcd(_v, mod());
      assert(eg.first == 1);
      return eg.second;
    }

    friend mint operator+(const mint &lhs, const mint &rhs) {
      return mint(lhs) += rhs;
    }
    friend mint operator-(const mint &lhs, const mint &rhs) {
      return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint &lhs, const mint &rhs) {
      return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint &lhs, const mint &rhs) {
      return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint &lhs, const mint &rhs) {
      return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint &lhs, const mint &rhs) {
      return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() {
      return bt.umod();
    }
  };
  template <int id>
  internal::barrett dynamic_modint<id>::bt(998244353);

  using modint998244353 = static_modint<998244353>;
  using modint1000000007 = static_modint<1000000007>;
  using modint = dynamic_modint<-1>;

  namespace internal {

    template <class T>
    using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

    template <class T>
    using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

    template <class>
    struct is_dynamic_modint: public std::false_type {};
    template <int id>
    struct is_dynamic_modint<dynamic_modint<id>>: public std::true_type {};

    template <class T>
    using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

  } // namespace internal

} // namespace atcoder
// modint.hpp end here


#line 2 "math/mod-factorial.hpp"

#line 2 "math/base.hpp"

namespace matumoto {
  using namespace std;
  using ll = long long;
} // namespace matumoto
#line 4 "math/mod-factorial.hpp"

#line 6 "math/mod-factorial.hpp"

namespace matumoto {
  using mint = atcoder::modint1000000007;
  template <typename ModInt = mint>
  class ModFactorial {
    vector<ModInt> fact, invfact;

    int min_pow2_greater_equal_than(int k) {
      int pow2 = 1;
      while (pow2 < k) {
        pow2 <<= 1;
      }
      return pow2;
    }

  public:
    ModFactorial(): fact(1, 1), invfact(1, 1) {}

    ModInt factorial(int k) {
      if (k < 0)
        return 0;
      if (k < static_cast<int>(fact.size()))
        return fact[k];

      int pow2 = min_pow2_greater_equal_than(k);
      int old_size = fact.size();
      fact.resize(pow2 + 1);

      for (int i = old_size - 1; i < pow2; i++) {
        fact[i + 1] = fact[i] * ModInt(i + 1);
      }
      return fact[k];
    }

    ModInt inv_factorial(int k) {
      if (k < 0)
        return 0;
      if (k < static_cast<int>(invfact.size()))
        return invfact[k];

      int pow2 = min_pow2_greater_equal_than(k);
      int old_size = fact.size();
      invfact.resize(pow2 + 1);

      invfact[pow2] = ModInt(1) / factorial(pow2);
      for (int i = pow2; i > old_size; i--) {
        invfact[i - 1] = invfact[i] * ModInt(i);
      }
      return invfact[k];
    }

    ModInt inv(int k) {
      return ModInt(1) / ModInt(k);
    }

    ModInt permutation(int n, int k) {
      return factorial(n) * inv_factorial(n - k);
    }
    ModInt combination(int n, int k) {
      return factorial(n) * inv_factorial(k) * inv_factorial(n - k);
    }
    ModInt homogeneous(int n, int k) {
      return combination(n + k - 1, k);
    }
  };
} // namespace matumoto
#line 593 "test/aoj/dpl/5_D.test.cpp"
using namespace matumoto;

int main() {
  int n, k;
  cin >> n >> k;
  ModFactorial mf;

  cout << mf.combination(n + k - 1, n).val() << endl;
}
Back to top page